Quantifier-Elimination for the First-Order Theory of Boolean Algebras with Linear Cardinality Constraints

نویسنده

  • Peter Z. Revesz
چکیده

We present for the first-order theory of atomic Boolean algebras of sets with linear cardinality constraints a quantifier elimination algorithm. In the case of atomic Boolean algebras of sets, this is a new generalization of Boole’s well-known variable elimination method for conjunctions of Boolean equality constraints. We also explain the connection of this new logical result with the evaluation of relational calculus queries on constraint databases that contain Boolean linear cardinality constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The First-Order Theory of Sets with Cardinality Constraints is Decidable

Data structures often use an integer variable to keep track of the number of elements they store. An invariant of such data structure is that the value of the integer variable is equal to the number of elements stored in the data structure. Using a program analysis framework that supports abstraction of data structures as sets, such constraints can be expressed using the language of sets with c...

متن کامل

The Expressivity of Constraint Query Languages with Boolean Algebra Linear Cardinality Constraints

Constraint query languages with Boolean algebra linear cardinality constraints were introduced recently and shown to be evaluable using a quantifier elimination method in [22]. However, the expressive power of constraint query languages with linear cardinality constraints is still poorly understood in comparison with other cases of constraint query languages. This paper makes several contributi...

متن کامل

Quantifier Elimination for Linear Modular Constraints

Linear equalities, disequalities and inequalities on fixed-width bit-vectors, collectively called linear modular constraints, form an important fragment of the theory of fixed-width bit-vectors. We present an efficient and bit-precise algorithm for quantifier elimination from conjunctions of linear modular constraints. Our algorithm uses a layered approach, whereby sound but incomplete and chea...

متن کامل

A layered algorithm for quantifier elimination from linear modular constraints

Linear equalities, disequalities and inequalities on fixed-width bit-vectors, collectively called linear modular constraints, form an important fragment of the theory of fixedwidth bit-vectors. We present a practically efficient and bit-precise algorithm for quantifier elimination from conjunctions of linear modular constraints. Our algorithm uses a layered approach, whereby sound but incomplet...

متن کامل

On Sets with Cardinality Constraints in Satisfiability Modulo Theories

Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that can express constraints on sets of elements and their cardinalities. Problems from verification of complex properties of software often contain fragments that belong to quantifier-free BAPA (QFBAPA). Deciding the satisfiability of QFBAPA formulas has been shown to be NP-complete using an eager reduction to quantifier-fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004